Installation Manual

Standby Power Generator Set

C20 N6 (Spec A), C22 N6 (Spec A)
C25 N6 (Spec A), C30 N6 (Spec A)
C36 N6 (Spec A), C40 N6 (Spec A)
C30 N6H (Spec A), C36 N6H (Spec A)
C40 N6H (Spec A), C45 N6H (Spec A)
C50 N6H (Spec A), C60 N6H (Spec A)
Table of Contents

1. **IMPORTANT SAFETY INSTRUCTIONS** ... 1
 1.1 Warning, Caution, and Note Styles Used In This Manual .. 1
 1.2 General Information .. 1
 1.3 General Precautions .. 2
 1.4 Generator Voltage is Deadly .. 5
 1.5 Engine Exhaust is Deadly .. 5
 1.6 Fuel is Flammable and Explosive .. 5
 1.7 Batteries Can Explode .. 5
 1.8 Moving Parts Can Cause Severe Personal Injury or Death .. 6
 1.9 The Hazards of Carbon Monoxide .. 6

2. **INTRODUCTION** .. 9
 2.1 About this Manual ... 9
 2.2 Icons ... 9
 2.3 Related Literature ... 10
 2.4 Before Installation ... 11
 2.5 Model Specifications ... 12
 2.6 Transfer Switch Requirements .. 16

3. **PRE-INSTALLATION CONSIDERATIONS** .. 19
 3.1 Installation Codes and Standards for Safety .. 20
 3.2 Required Items for Installation .. 21
 3.3 Transfer Switch Mounting ... 22

4. **INSTALLATION** .. 23
 4.1 Site Assessment and Preparation .. 23
 4.2 Fuel Selection and Fuel System Connection .. 27
 4.3 Engine Exhaust ... 36
 4.4 Electrical Connections .. 36

5. **STARTUP AND CONFIGURATION** ... 49
 5.1 Brightness and Contrast ... 49
 5.2 History and About Menu ... 51
 5.3 Time Setup ... 53
 5.4 Exercise Settings ... 56
 5.5 Commissioning Checklist ... 59
 5.6 Startup ... 59

APPENDIX A. FUEL LINE SELECTION... 61
 A.0 Gas Pipe Sizing .. 62

APPENDIX B. OUTLINE AND SYSTEM DRAWINGS... 69
This page is intentionally blank.
1 IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTIONS.

This manual contains important instructions for the generator set. Follow these instructions during installation, operation, and maintenance of the generator set and batteries.

Thoroughly read the Operator Manual before operating the generator set. Safe operation and top performance can only be obtained when the equipment is properly operated and maintained.

1.1 Warning, Caution, and Note Styles Used In This Manual

The following safety styles and symbols found throughout this manual indicate potentially hazardous conditions to the operator, service personnel, or the equipment.

<table>
<thead>
<tr>
<th>Style</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ DANGER</td>
<td>Indicates a hazardous situation that, if not avoided, will result in death or serious injury.</td>
</tr>
<tr>
<td>⚠️ WARNING</td>
<td>Indicates a hazardous situation that, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>⚠️ CAUTION</td>
<td>Indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.</td>
</tr>
<tr>
<td></td>
<td>Indicates information considered important, but not hazard-related (e.g., messages relating to property damage).</td>
</tr>
</tbody>
</table>

1.2 General Information

This manual should form part of the documentation package supplied by Cummins Power Generation with specific generator sets. In the event that this manual has been supplied in isolation please contact your authorized dealer.
1. IMPORTANT SAFETY INSTRUCTIONS

1.3 General Precautions

- Keep ABC fire extinguishers accessible.
- Make sure that all fasteners are secure and torqued properly.
- Keep the generator set and its compartment clean. Do not store any items in the generator set compartment.
- Before working on the generator set:
 1. Press the Stop Switch and disable AUTO mode.
 2. Disconnect AC power from any battery chargers.
 3. Remove the negative (−) battery cable from the battery to prevent it from contacting the battery terminal post.
- Use caution when making adjustments when the generator set is running, hot, or when parts are electrically live, as all situations may cause personal injury or death.
- Used engine oil has been identified by some state and federal agencies as causing cancer or reproductive toxicity. Do not ingest, inhale, or come into contact with used oil or its vapors.
- Do not work on the generator set when mentally or physically fatigued or after consuming alcohol or drugs.

Notice

Only trained and authorized personnel shall maintain or service the generator set.

General Safety Precautions

⚠️ WARNING

Coolants under pressure can cause severe scalding. Do not open a radiator or heat exchanger pressure cap while the engine is running. Let the engine cool down before removing the coolant pressure cap. Turn the cap slowly and do not open it fully until the pressure has been relieved.
1. IMPORTANT SAFETY INSTRUCTIONS

WARNING

Moving parts can cause severe personal injury or death and hot exhaust parts can cause severe burns. Make sure all protective guards are properly in place before starting the generator set.

WARNING

Used engine oils have been identified by some state and federal agencies to cause cancer or reproductive toxicity. Do not ingest, breathe the fumes, or contact used oil when checking or changing engine oil.

WARNING

Operation of equipment is unsafe when mentally or physically fatigued. Do not operate equipment in this condition, or after consuming any alcohol or drug.

WARNING

Substances in exhaust gases have been identified by some state and federal agencies to cause cancer or reproductive toxicity. Do not breathe in or come into contact with exhaust gases.

WARNING

Flammable liquids can cause fire or explosion. Do not store fuel, cleaners, oil, etc. near the generator set.

WARNING

Wear hearing protection when going near an operating generator set.

WARNING

Hot metal parts can cause severe burns. Avoid contact with the radiator, turbo charger, and exhaust system.

WARNING

Maintaining or installing a generator set can cause severe personal injury. Wear personal protective equipment such as safety glasses, protective gloves, hard hats, steel-toed boots, and protective clothing when working on equipment.

WARNING

Ethylene glycol, used as engine coolant, is toxic to humans and animals. Clean up coolant spills and dispose of used antifreeze in accordance with local environmental regulations.
WARNING

Starting fluids, such as ether, can cause explosion and generator set engine damage. Do not use.

CAUTION

Stepping on the generator set can cause parts to bend or break, leading to electrical shorts, or to fuel, coolant, or exhaust leaks. Do not step on the generator set when entering or leaving the generator room.

CAUTION

To prevent accidental or remote starting while working on the generator set, disconnect the negative (−) battery cable at the battery using an insulated wrench.

CAUTION

Make sure that rags are not left on or near the engine.

CAUTION

Make sure the generator set is mounted in a manner to prevent combustible materials from accumulating under the unit.

CAUTION

Accumulated grease and oil can cause overheating and engine damage presenting a potential fire hazard. Keep the generator set clean and repair any oil leaks promptly.

CAUTION

Before performing maintenance and service procedures on enclosed generator sets, make sure the service access doors are secured open.

CAUTION

Keep the generator set and the surrounding area clean and free from obstructions. Remove any debris from the set and keep the floor clean and dry.

NOTICE

Keep multi-class ABC fire extinguishers handy. Class A fires involve ordinary combustible materials such as wood and cloth. Class B fires involve combustible and flammable liquid fuels and gaseous fuels. Class C fires involve live electrical equipment. (Refer to NFPA No. 10 in applicable region.)
1.4 Generator Voltage is Deadly

- Generator output connections must be made by a trained and experienced electrician in accordance with all applicable codes.
- This generator set and the public utility may only be connected to house circuits by means of the automatic transfer switch.

⚠️ CAUTION

Improper connections can lead to electrocution of utility workers and damage to equipment. Make sure that the connections are installed properly by a trained technician.

- Use caution when working on live electrical equipment. Remove jewelry, and make sure clothing and shoes are dry. Stand on a dry wooden platform.

1.5 Engine Exhaust is Deadly

- See The Hazards of Carbon Monoxide to learn the symptoms of Carbon Monoxide poisoning.
- Locate the generator set away from doors, windows, other openings into the house, and where exhaust gases will disperse away from the house.

1.6 Fuel is Flammable and Explosive

- Keep flames, cigarettes, sparks, pilot lights, electrical arc-producing equipment, switches, and all other sources of ignition away from areas where fuel fumes are present and areas sharing ventilation.
- Fuel lines must be secured, free of leaks, and separated or shielded from electrical wiring.
-Leaks can lead to explosive accumulations of gas. Prevent leaks and the accumulation of gas. A rotten egg smell indicates a possible natural gas or propane leak.
 - Natural gas rises when released and can accumulate under hoods and inside housings and buildings.
 - Propane sinks when released and can accumulate inside housings and basements and other below-grade spaces.

1.7 Batteries Can Explode

Batteries can explode, causing severe skin and eye burns and can release toxic electrolytes.
1. IMPORTANT SAFETY INSTRUCTIONS

1.8 Moving Parts Can Cause Severe Personal Injury or Death

- Do not wear loose clothing or jewelry near moving parts, such as fans.
- Keep hands away from moving parts.
- Keep guards in place over fans.

1.9 The Hazards of Carbon Monoxide

Carbon Monoxide (CO) is an odorless, colorless, tasteless and non-irritating gas (you cannot see it or smell it). Exposure even to low levels of CO for a prolonged period can lead to asphyxiation (lack of Oxygen), resulting in death. Mild effects of CO poisoning include eye irritation, dizziness, headaches, fatigue, and the inability to think clearly. More extreme symptoms include vomiting, seizures, and collapse.

Engine-driven generators produce harmful levels of carbon monoxide that can injure or kill you.

Special Risks of CO Near the Home

Residents can be exposed to lethal levels of CO when the generator set is running. Depending on air temperature and wind, CO can accumulate in or near the home.

WARNING

Do not dispose of the battery in a fire, because it is capable of exploding. Do not open or mutilate the battery. Released electrolytes have been known to be harmful to the skin and eyes and to be toxic. Batteries present the risk to high short circuit current. Remove watches, rings, or other metal objects, and use tools with insulated handles.

- Wear safety glasses.
- Do not smoke.
- To prevent arcing when disconnecting the battery:
 1. Press the Stop Switch.
 2. Disconnect AC power from any battery chargers.
 3. Remove the negative (-) battery cable to prevent starting.
- To prevent arcing when reconnecting the battery:
 1. Reconnect the positive (+) cable.
 2. Reconnect the negative (-) cable.
 3. Reconnect the battery charger to AC power supply.
- When replacing the generator set battery, always replace it with a battery as specified in the [Model Specifications] section of this manual.
To protect yourself and others from the dangers of CO poisoning, it is recommended that reliable, approved, and operable CO detector alarms are installed in proper locations in the home as specified by their manufacturer.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
</table>

Carbon Monoxide (CO) gas can cause nausea, fainting, or death.

Protecting Yourself From CO Poisoning

- Locate the generator in an area where there are no windows, doors, or other access points into the home.
- Make sure all CO detectors are installed and working properly.
- Pay attention for signs of CO poisoning.
- Check the exhaust system for corrosion, obstruction, and leaks every time you start the generator set and every eight hours when you run it continuously.
This page is intentionally blank.
2 Introduction

This generator set is intended for stationary installation for emergency use only.

2.1 About this Manual

This manual is a guide for the installation of the generator set models listed on the front cover. Proper installation is essential for top performance, reliable operation, and safety. Read through this manual before starting the installation. This manual covers outdoor applications only. For other applications, such as indoor applications, contact your local Cummins dealer or reference the Application Manual at the following link: http://www.cumminspower.com/www/literature/applicationmanuals/t030.pdf

| NOTICE |
| The installation must comply with all applicable building codes. |

See the generator set Operator Manual (A045R242) for operation and maintenance and the Service Manual (A045R243) for service.

| NOTICE |
| Manuals are updated from time to time to reflect changes in the equipment and its specifications. The most up-to-date version of this manual is found on the QuickServe website (https://quickserve.cummins.com/info/index.html). |

2.2 Icons

The following symbols may have been used in this manual to help communicate the intent of the instructions. They are defined below.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clean the part or assembly.</td>
</tr>
<tr>
<td></td>
<td>Indicates an electrical measurement.</td>
</tr>
<tr>
<td></td>
<td>Indicates that an inspection is required.</td>
</tr>
</tbody>
</table>
2. Introduction

2.3 Related Literature

The literature provided with the generator set is as follows.

- Installation Manual (A045R241)
- Operator Manual (A045R242)

⚠️ CAUTION

A generator set must be operated and maintained properly if you are to expect safe and reliable operation. The Operator Manual includes a maintenance schedule and a troubleshooting guide. The Health and Safety Manual must be read in conjunction with this manual for the safe operation of the generator set:

- Health and Safety Manual (0908-0110)
- Warranty Statement (A028U870)
• Emissions Component Defect Warranty Statement (A028X278)

The relevant manuals appropriate to your generator set are also available. The documents below are in English:

• Service Manual (A045R243)
• Parts Manual (A046Z674)
• E-Controls, Inc. Service Manual (A035C596)
• Global Control Platform (GCP) Engine Display Interface Software (EDIS) Training Manual (A035C608)
• RA Series Transfer Switch Owner's Manual (A046S594) - if applicable
• PowerCommand® 1302 Controller Owner's Manual (900-0661)
• Standard Repair Times (SRT) Manual (A046Z094)
• Application Manual T-030 - for application information (A040S369)
• Service Tool Manual (A043D529)

2.4 Before Installation

Before beginning the installation of the generator set, verify that the unit was correctly selected. Check the following features:

- Model
- Specifications
- Options
- Fuel Supply
 ⊳ The gas supplied to the generator set must be of acceptable quality.
 ⊳ The gas supply must have sufficient pressure. Care must be taken to be sure that the gas supply at the generator set, not just at the source, is of proper pressure for operation. The specified pressure must be available while the generator set is starting and running at full load.
 ⊳ The gas must be supplied to the generator set in sufficient volume to support operation of the generator set. This is normally a matter of selecting fuel line size to be large enough to transport the volume of fuel needed. For liquid propane vapor-withdrawal fuel systems the size and temperature of the fuel tank also affects this requirement.
2.5 Model Specifications

TABLE 1. 2.4L MODEL VARIATIONS

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20 N6, C22 N6, C25 N6, C30 N6, C36 N6, C40 N6</td>
<td>60 Hz, 1800 RPM</td>
</tr>
<tr>
<td>C30 N6H, C36 N6H, C40 N6H, C45 N6H, C50 N6H, C60 N6H</td>
<td>60 Hz, 3600 RPM</td>
</tr>
</tbody>
</table>

TABLE 2. COLD WEATHER SPECIFICATIONS

<table>
<thead>
<tr>
<th>All Models</th>
<th>For NFPA 110 applications, a coolant heater is required. Factory option is available.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 40 °F (4 °C)</td>
<td>No starting aids required. Standard battery (group 26)</td>
</tr>
<tr>
<td>0 to 40 °F (-17 to 4 °C)</td>
<td>Additional coolant heater and battery charger recommended for starting. Factory options available. Standard battery (group 26)</td>
</tr>
<tr>
<td>Below 0 °F (-17 °C)</td>
<td>All starting aides (battery heater, coolant heater, battery charger) recommended. Factory options available. Larger battery (group 24)</td>
</tr>
</tbody>
</table>

TABLE 3. FUEL SPECIFICATIONS 60 HZ, 1800 RPM

<table>
<thead>
<tr>
<th></th>
<th>C20 N6</th>
<th>C22 N6</th>
<th>C25 N6</th>
<th>C30 N6</th>
<th>C36 N6</th>
<th>C40 N6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full load (propane)</td>
<td>105.1 scfh</td>
<td>112.7 scfh</td>
<td>125.4 scfh</td>
<td>164.1 scfh</td>
<td>182.7 scfh</td>
<td>193.6 scfh</td>
</tr>
<tr>
<td>(propane)</td>
<td>265,000 BTU/hr</td>
<td>285,000 BTU/hr</td>
<td>315,000 BTU/hr</td>
<td>410,000 BTU/hr</td>
<td>460,000 BTU/hr</td>
<td>490,000 BTU/hr</td>
</tr>
<tr>
<td>Full load (natural gas)</td>
<td>259.6 scfh</td>
<td>278.8 scfh</td>
<td>309.5 scfh</td>
<td>380.9 scfh</td>
<td>472.3 scfh</td>
<td>519 scfh</td>
</tr>
<tr>
<td>(natural gas)</td>
<td>270,000 BTU/hr</td>
<td>290,000 BTU/hr</td>
<td>320,000 BTU/hr</td>
<td>395,000 BTU/hr</td>
<td>490,000 BTU/hr</td>
<td>540,000 BTU/hr</td>
</tr>
<tr>
<td>Fuel pressure</td>
<td>6-14 inch water column</td>
</tr>
</tbody>
</table>
TABLE 4. FUEL SPECIFICATIONS 60 Hz, 3600 RPM

<table>
<thead>
<tr>
<th></th>
<th>C30 N6H</th>
<th>C36 N6H</th>
<th>C40 N6H</th>
<th>C45 N6H</th>
<th>C50 N6H</th>
<th>C60 N6H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(propane)</td>
<td>195.5 scfh</td>
<td>219.6 scfh</td>
<td>236.2 scfh</td>
<td>256.9 scfh</td>
<td>289.5 scfh</td>
<td>324.6 scfh</td>
</tr>
<tr>
<td>BTU/hr</td>
<td>490,000</td>
<td>550,000</td>
<td>595,000</td>
<td>645,000</td>
<td>725,000</td>
<td>820,000</td>
</tr>
<tr>
<td>Full load</td>
<td>476.1 scfh</td>
<td>533.3 scfh</td>
<td>573.2 scfh</td>
<td>623.0 scfh</td>
<td>704.7 scfh</td>
<td>814.2 scfh</td>
</tr>
<tr>
<td>(natural gas)</td>
<td>495,000</td>
<td>555,000</td>
<td>595,000</td>
<td>645,000</td>
<td>730,000</td>
<td>840,000</td>
</tr>
</tbody>
</table>
| **Fuel pressure** | 6-14 inch water column | }
TABLE 8. GENERATOR SET WEIGHT (POUNDS) 60 HZ, 3600 RPM

<table>
<thead>
<tr>
<th></th>
<th>C30 N6H</th>
<th>C36 N6H</th>
<th>C40 N6H</th>
<th>C45 N6H</th>
<th>C50 N6H</th>
<th>C60 N6H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound level 1 (wet)</td>
<td>1134</td>
<td>1249</td>
<td>1399</td>
<td>1399</td>
<td>1399</td>
<td>1429</td>
</tr>
</tbody>
</table>

TABLE 9. GENERATOR SPECIFICATIONS 60 HZ, 1800 RPM

<table>
<thead>
<tr>
<th></th>
<th>C20 N6</th>
<th>C22 N6</th>
<th>C25 N6</th>
<th>C30 N6</th>
<th>C36 N6</th>
<th>C40 N6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator</td>
<td>Brushless, 2-pole rotating field, single bearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (kVA) 1 phase/3 phase</td>
<td>20/25</td>
<td>22/27.5</td>
<td>25/31.3</td>
<td>30/37.5</td>
<td>36/45</td>
<td>40/50</td>
</tr>
<tr>
<td>Rated voltages (V)</td>
<td>120/240 1 Ph</td>
</tr>
<tr>
<td></td>
<td>120/240 3 Ph</td>
</tr>
<tr>
<td></td>
<td>120/208 3 Ph</td>
</tr>
<tr>
<td></td>
<td>277/480 3 Ph</td>
</tr>
<tr>
<td></td>
<td>347/600 3 Ph</td>
</tr>
</tbody>
</table>

TABLE 10. GENERATOR SPECIFICATIONS 60 HZ, 3600 RPM

<table>
<thead>
<tr>
<th></th>
<th>C30 N6H</th>
<th>C36 N6H</th>
<th>C40 N6H</th>
<th>C45 N6H</th>
<th>C50 N6H</th>
<th>C60 N6H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator</td>
<td>Brushless, 2-pole rotating field, single bearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (kVA) 1 Phase/3 Phase</td>
<td>30/37.5</td>
<td>36/45</td>
<td>40/50</td>
<td>45/56.3</td>
<td>50/62.5</td>
<td>60/75</td>
</tr>
<tr>
<td>Rated Voltages (V)</td>
<td>120/240 1 Ph</td>
</tr>
<tr>
<td></td>
<td>120/240 3 Ph</td>
</tr>
<tr>
<td></td>
<td>120/208 3 Ph</td>
</tr>
<tr>
<td></td>
<td>277/480 3 Ph</td>
</tr>
<tr>
<td></td>
<td>277/480 3 Ph</td>
</tr>
</tbody>
</table>
TABLE 11. GENERATOR SET DERATING GUIDELINES

<table>
<thead>
<tr>
<th>Model</th>
<th>NG/LP</th>
<th>Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20 N6</td>
<td>NG, LP</td>
<td>Engine power available up to 1005 m (3300 ft) at ambient temperatures up to 40 °C (104 °F). Above these elevations derate at 4% per 305 m (1000 ft) and 2% per 10 °C above 40 °C (104 °F).</td>
</tr>
<tr>
<td>C22 N6</td>
<td>LP</td>
<td></td>
</tr>
<tr>
<td>C30 N6</td>
<td>LP</td>
<td></td>
</tr>
<tr>
<td>C36 N6</td>
<td>NG, LP</td>
<td></td>
</tr>
<tr>
<td>C36 N6H</td>
<td>NG, LP</td>
<td></td>
</tr>
<tr>
<td>C40 N6H</td>
<td>NG, LP</td>
<td></td>
</tr>
<tr>
<td>C45 N6H</td>
<td>LP</td>
<td></td>
</tr>
<tr>
<td>C22 N6</td>
<td>NG</td>
<td>Engine power available up to 670.5 m (2200 ft) at ambient temperatures up to 40 °C (104 °F). Above these elevations derate at 4% per 305 m (1000 ft) and 2% per 10 °C above 40 °C (104 °F).</td>
</tr>
<tr>
<td>C40 N6</td>
<td>NG, LP</td>
<td>Engine power available up to 114 m (375 ft) at ambient temperatures up to 40 °C (104 °F). Above these elevations derate at 4% per 305 m (1000 ft) and 2% per 10 °C above 40 °C (104 °F).</td>
</tr>
<tr>
<td>C60 N6H</td>
<td>NG, LP</td>
<td></td>
</tr>
<tr>
<td>C25 N6</td>
<td>NG</td>
<td>Engine power available up to 0 m (0 ft) at ambient temperatures up to 25 °C (77 °F). Above these elevations derate at 4% per 305 m (1000 ft) and 2% per 10 °C above 40 °C (104 °F).</td>
</tr>
<tr>
<td>C25 N6</td>
<td>LP</td>
<td>Engine power available up to 114 m (375 ft) at ambient temperatures up to 25 °C (77 °F). Above these elevations derate at 4% per 305 m (1000 ft) and 2% per 10 °C above 25 °C (77 °F).</td>
</tr>
<tr>
<td>C50 N6H</td>
<td>NG, LP</td>
<td></td>
</tr>
<tr>
<td>C30 N6</td>
<td>NG</td>
<td>Engine power available up to 762 m (2500 ft) at ambient temperatures up to 40 °C (104 °F). Above these elevations derate at 4% per 305 m (1000 ft) and 2% per 10 °C above 40 °C (104 °F).</td>
</tr>
<tr>
<td>C30 N6H</td>
<td>NG, LP</td>
<td>Engine power available up to 945 m (3100 ft) at ambient temperatures up to 40 °C (104 °F). Above these elevations derate at 4% per 305 m (1000 ft) and 2% per 10 °C above 40 °C (104 °F).</td>
</tr>
</tbody>
</table>
Model | NG/LP | Guidelines
--- | --- | ---
C45 N6H | NG, LP | Engine power available up to 914 m (3000 ft) at ambient temperatures up to 40 °C (104 °F). Above these elevations derate at 4% per 305 m (1000 ft) and 2% per 10 °C above 40 °C (104 °F).

TABLE 12. CONTROL SPECIFICATIONS

<table>
<thead>
<tr>
<th>All Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

TABLE 13. DC SYSTEM SPECIFICATIONS

<table>
<thead>
<tr>
<th>All Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal battery voltage</td>
</tr>
<tr>
<td>Battery group</td>
</tr>
<tr>
<td>Battery Type</td>
</tr>
<tr>
<td>Minimum cold crank amps</td>
</tr>
</tbody>
</table>

2.6 Transfer Switch Requirements

A transfer switch must be a part of every generator set installation. Transfer switches transfer loads to the generator set during power outages.

NOTICE

Cummins residential and light commercial transfer switches are available.

FIGURE 1. CUMMINS TRANSFER SWITCH (RA SERIES)
Before beginning the installation of the transfer switch, verify that the unit was correctly selected. Check the following features:

- Specifications (voltage, amperage, frequency, poles, and phases)
- Enclosure (indoor vs. outdoor)
- Model

Refer to the Transfer Switch Installation Manual for more detailed information.
This page is intentionally blank.
3 Pre-Installation Considerations

Before installation begins, certain items must be considered. Prior coordination reduces delays and the amount of time power has to be interrupted.

Areas of consideration:

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Generator Set</td>
<td>4</td>
<td>Electrical Meter</td>
</tr>
<tr>
<td>2</td>
<td>Propane Tank</td>
<td>5</td>
<td>Natural Gas Meter</td>
</tr>
<tr>
<td>3</td>
<td>Transfer Switch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 2. SITE PREPARATION EXAMPLE

- Location of the generator set - this is one of the first decisions to be made, as it affects all other aspects of the installation, such as:
 - Length of electric wiring
 - Length of gas lines (natural gas or propane - both must be inspected by the gas utility inspectors and building inspectors)
 - Site preparation:
 - Access to the site
 - Trenches
 - Site preparation materials needed
- Fuel supply pressure
- Automatic transfer switch location and connections
3. Pre-Installation Considerations

• Tools and materials required
• Minimum distance from the propane tank fill (verify the legal minimum distance with local code officials)
• Accessories required (if any) for the customer's application (utility power may be required at the generator set; make plans accordingly)

NOTICE
Depending on the locality and use of the generator set, it may be necessary to obtain an air quality emissions permit before installation begins. Check with local pollution control or air quality authority to determine permit requirements.

3.1 Installation Codes and Standards for Safety

NOTICE
The generator set installer bears sole responsibility for following all applicable local codes and regulations.

The following list of codes and standards may apply to the installation and operation of the generator set. This list is for reference only and not intended to be inclusive of all applicable codes and standards. The address of each agency is listed so that copies of the codes may be obtained for reference. Installation codes and recommendations are subject to change, and may vary by location or over time.

TABLE 14. INSTALLATION CODES AND STANDARDS FOR SAFETY RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Code Description</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPA 70 - National Electric Code</td>
<td>National Fire Protection Association 470 Atlantic Avenue Boston, MA 02210</td>
</tr>
<tr>
<td>NFPA 37 - Installation and Use of Stationary Combustion Engines and Gas Turbines</td>
<td></td>
</tr>
<tr>
<td>NFPA 54 - National Fuel Gas Code</td>
<td></td>
</tr>
<tr>
<td>NFPA 58 - Storage and Handling of Liquefied Petroleum Gases</td>
<td></td>
</tr>
<tr>
<td>NFPA 110 - Standard for Emergency and Standby Power Systems</td>
<td></td>
</tr>
<tr>
<td>CSA Electrical Bulletin</td>
<td>Canadian Standards Association Housing and Construction Materials Section 178 Rexdale Blvd. Rexdale, Ontario, Canada M9Q 1R3</td>
</tr>
<tr>
<td>CSA C22.2 No. 100</td>
<td></td>
</tr>
<tr>
<td>CSA C22.2 No. 14</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Required Items for Installation

Tools and materials are used for the installation of this generator set. These items are identified in the following sections. Please refer to local codes and standards, as they may affect the materials required.

Materials Required

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to local codes and standards, as they may affect the material requirements.</td>
</tr>
</tbody>
</table>

Electrical Materials:

- Appropriately-sized gauge and length AC wires with 75 °C insulation. Four wires; L1, L2, N and Gnd (add another wire for 3-phase)
- Appropriate conduit for all AC wires
- Four 18 AWG 60-75 °C copper DC control wires and conduit for ATS interface (RA Series)
- Code compliant 20A, GFCI circuit for alternator heaters/battery charger/coolant heater (if equipped)

Mounting Materials:

- Four base tie-down bolts

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismic zone installations require compliance to specific mounting configurations.</td>
</tr>
</tbody>
</table>

Fuel Materials:

- Flexible fuel line (provided with generator)
- UL listed pipe thread sealant
3. Pre-Installation Considerations

- Fuel line (natural gas and propane: 6-14 inch water column fuel pressure) at generator set
- Fuel pressure regulator - as required
- Manual fuel shut-off at generator set ahead of automatic valves on generator set fuel system

Loose Parts Shipped With the Generator

The following loose parts are shipped with the generator set:

- Flexible fuel hose assembly
- Two enclosure keys (where applicable)
- Battery tie-down
- Sound level 2 baffle (where applicable)

3.3 Transfer Switch Mounting

1. Consider the location before mounting the transfer switch.
 - Consider the proximity to the utility service entrance and breaker panel. There must be a service disconnect (circuit breaker or fuses) in the power line ahead of the transfer switch, unless a service entrance rated automatic transfer switch is being used.
 - Keep safety concerns in mind. Never mount the transfer switch near hazardous chemicals or gases.
 - Avoid high humidity areas or areas prone to excessive heat or dust.

2. Make sure that the wall is stable and able to support the weight of the transfer switch.

3. Make sure that the transfer switch is mounted according to all applicable building code requirements.

4. Mount the transfer switch per the instructions in the Transfer Switch Installation Manual.
4 Installation

The installer is responsible for complying with all applicable installation codes and safety requirements. See the Installation Codes and Standards for Safety section of this manual for more information.

The following sections cover a step-by-step overview of a typical generator set installation.

Review these sections to become familiar with specific procedures and important safety precautions before beginning the installation.

4.1 Site Assessment and Preparation

Proper component location and site preparation have a very important impact on completing a successful installation. The major components and sources of power needed for installation include the following items:

- Generator set
- Transfer switch
- Electrical utility
- Fuel source: natural gas or propane vapor
- Accessories (may be required based on certain conditions)

Picking a Location

WARNING

Exhaust gas is deadly. Locate the generator set away from doors, windows, and other openings to the house and where exhaust gases will disperse away from the house.
Generator set location is critical for safety and performance. Follow the guidelines below.

- Must comply with applicable codes (NFPA, NEC, IBC, etc.).
- Install outdoors only. For other applications, contact your local Cummins dealer or reference the Application Manual at the following link: http://www.cumminspower.com/www/literature/applicationmanuals/t030.pdf
- Consider access to utilities (electric/gas meters, transfer switch, remote fuel tank location, etc.).
- Call the local utilities to mark the locations of buried utility services (gas, electric, or telephone) before digging.
- Verify the locations of any other buried components (gas, electric or telephone) with the homeowner before digging.

Clearances:
- The exhaust side of the generator set must be located 5 feet from combustible materials (NFPA 37).
- The exhaust side of the generator must be located 5 feet from any opening in a wall (window, door, vent, etc.).
- The generator must be located such that the exhaust is not able to accumulate in an occupied area.
- The generator must have enough room for installation, service, and maintenance.
- The generator must be located to ensure ventilation openings are not blocked.
- Position the generator set so that cooling air is free to enter and leave the area.
• Locate and position the generator set so that prevailing winds carry exhaust gases and potential fuel leaks away from the house or occupied area.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 ft Clearance (shaded area)</td>
</tr>
</tbody>
</table>

FIGURE 4. CLEARANCES

Laying the Foundation

When laying the foundation:

1. Clear obstructions, and make sure that there is adequate clearance for access.
2. Level the ground, and make sure that the ground is compact and settled. Ensure that it is stable ground, not subject to flooding.
3. Prepare the concrete pad.
 - The pad should be constructed of reinforced concrete with a 28-day compressive strength of at least 2500-psi (17,236.89 kPa).
 - The pad should be at least 5 inches (127 mm) deep and extend at least 6 inches (150 mm) beyond the skid on all sides.

NOTICE

Seismic installation may require a different pad and securing devices.
4. Lift the generator set onto the pad, and secure it.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pad Thickness (at least 5 inches deep)</td>
<td>5</td>
<td>Accessory 120 V AC, 20 A Max Wire Stub-Up</td>
</tr>
<tr>
<td>2</td>
<td>Width (pad should extend at least 6 inches beyond skid)</td>
<td>6</td>
<td>Circuit Breaker 2 Stub-Up (dual circuit breaker)</td>
</tr>
<tr>
<td>3</td>
<td>Length (pad should extend at least 6 inches beyond skid)</td>
<td>7</td>
<td>Circuit Breaker 1 Stub-Up (standard)</td>
</tr>
<tr>
<td>4</td>
<td>Generator Set Control Wire Stub-Up (DC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 5. CONCRETE PAD PREPARATION
Lifting and Moving the Generator Set

WARNING

The generator set is heavy. Dropping the generator set can cause severe personal injury or death. Keep feet and hands clear when lifting the generator set.

CAUTION

The generator is shipped with oil in the crankcase. Keep the generator set upright.

- The generator set is heavy. Handle with care.
- Use appropriate lifting techniques to move the generator set. Do not use the lifting eyes on the engine and alternator to lift the entire generator set.

NOTICE

Only a certified and trained person should lift from above the generator set.

Mounting the Generator Set

Positioning of cast-in bolts can be problematic since even small errors in location can cause time consuming redrilling of the skid base. Some generator set designs allow use of concrete anchor bolts, requiring the mounting points to be carefully laid out based on actual location of the mounting points on the generator set and isolators.

Mount the generator set on a substantial and level base such as a concrete pad. A non-combustible material must be used for the pad. Verify that the mounting pad is level lengthwise, widthwise, and diagonally.

NOTICE

Seismic installation may require specific anchorage.

4.2 Fuel Selection and Fuel System Connection

For fuel specifications (such as BTU/hr), see the [Model Specifications](#) section.
NOTICE

This generator set has a convertible fuel system. The generator may run on natural gas or propane, depending on the preferences of the owner. All generator sets come preconfigured from the factory for natural gas fuel. For more information on converting the fuel system type, contact your Cummins dealer or reference the Service Manual (A045R243).

NOTICE

Fuel systems must be installed by qualified service technicians. Improper installation presents hazards of fire and improper operation, resulting in severe personal injury or property damage.

WARNING

Gaseous fuels are flammable, explosive, and can cause severe personal injury or death. Do not smoke if you smell gas, are near fuel tanks for fuel-burning equipment, or are in an area sharing ventilation with such equipment. Keep flames, sparks, pilot lights, electrical arcs, arc-producing equipment and all other sources of ignition well away. Keep a type ABC fire extinguisher handy.

In all fuel system installations, cleanliness is extremely important.

- Make every effort to prevent fuel contamination from:
 - Moisture
 - Dirt
 - Excess thread sealant
 - Contaminants of any kind

- Clean all fuel system components before installing.

Gaseous-fuel supply system design, materials, components, fabrication, assembly, installation, testing, inspection, operation, and maintenance must comply with the applicable codes. See NFPA Standards No. 37, 54, and 58. For seismic installation, refer to IBC codes and standards. Where seismic installation is required, there may be specific anchorage requirements for the generator set and other installed components.

Most codes require a manual shutoff valve ahead of a flexible fuel hose. The manual valve should be of the indicating type. The generator set has electric (battery-powered) shutoff valves included.

NOTICE

It is recommended that a shutoff valve be located near the generator set for emergency shut off or servicing the generator set. Follow applicable codes.
Until the generator set is connected, cap the fuel line stub-up at the generator set to prevent dirt from entering and gas from discharging if the gas supply shutoff valve is opened accidentally.

To determine the required capacity, add generator set consumption to the gas consumed for heating, cooking, clothes drying, etc. A typical natural gas installation might require a 400,000 BTU meter. Consideration should also be given to utilizing high pressure gas supply if available. This reduces the required size and cost of gas piping, especially if the location of the generator set requires a long supply line.

Natural Gas Fuel System

Requirements for a natural gas generator set are as follows.

- Adequate fuel supply to operate correctly and run at full load
- Pipeline quality gas
- The length of the fuel supply pipe from the gas service entrance to the generator set must be known to determine the correct fuel pipe size (refer to the Fuel Line Selection charts)

> **NOTICE**
> Iron pipe must be a minimum of schedule 40 subject to the authority having jurisdiction.

- Cummins flexible fuel line to protect the fuel system from vibration, expansion, and contraction
- Manual shutoff valve

> **WARNING**
> Fuel leaks can lead to explosive accumulations of gas. Prevent gas leaks and the accumulation of gaseous fuel in the event of a leak.
FIGURE 6. TYPICAL NATURAL GAS INSTALLATION

Natural Gas Supply Line Size

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shutoff Valve</td>
<td>3</td>
<td>Meter</td>
</tr>
<tr>
<td>2</td>
<td>Flexible Fuel Line</td>
<td>4</td>
<td>Regulator</td>
</tr>
</tbody>
</table>

NOTICE

The Natural Gas supply meter may need to be exchanged for a higher capacity meter to supply the additional gas consumed by the generator set.

NOTICE

An older site might require upgrading and repair of the gas supply system. Schedule an upgrade or repair to minimize power and gas supply interruptions.

Use the total load requirement of the generator set to determine the size of the fuel supply pipe. Use the Fuel Line Selection tables and charts in the Appendix to determine the correct pipe size.

NOTICE

Make sure the fuel supply pressure at the inlet to the generator fuel shutoff valves is set between 6-14 inch water column for all operating loads (no load to full load).
Propane Fuel System

Propane vapor can be used as a primary fuel source or as a backup fuel source for the generator sets with two independent fuel sources connected to the generator set.

NOTICE

NFPA Standard No. 58 requires all persons handling and operating propane to be trained in proper handling and operating procedures.

WARNING

Fuel leaks can lead to explosive accumulations of gas. Propane sinks in air and can accumulate inside housings, basements, and other below-grade spaces. Prevent gas leaks and the accumulation of gaseous fuel in the event of a leak.

The required components in a propane vapor fuel system are as follows.

- **Propane tank** - Make sure to identify and utilize the correct tank size based on fuel flow requirements and the lowest average temperature for your region. If the tank is sized incorrectly, the generator set could run out of fuel. Refer to the Minimum LPG Tank Size figure in the Fuel Line Selection Appendix.
- **Shutoff valve** - Useful during installation or in the event of a leak (may be required to meet local codes).
- **Primary regulator** - Located at the tank outlet, the primary regulator reduces the tank pressure to the working pressure in the fuel supply line. Primary and secondary regulators must be properly matched for a safe and functional system. Consult with your propane supplier to ensure that the regulators are properly sized.
- **Secondary regulator** - Located near the generator set, the secondary regulator reduces the higher line pressure to a working pressure of 6-14 inch water column. Higher pressure before the secondary regulator is necessary to ensure that there is enough fuel available at the secondary regulator for a fully loaded generator set.
- **Fuel line** - Connects to the fuel supply. It must be sized properly using the propane fuel line sizing charts (see the Fuel Line Selection Appendix). Installation must comply with all national, state, and local codes.
- **Cummins flexible fuel line** - Protects the fuel system from vibration, expansion, and contraction.
FIGURE 7. TYPICAL PROPANE INSTALLATION

Recommended Fuel (Propane)

WARNING

Propane presents the hazard of fire or explosion that can cause severe personal injury or death. Do not permit any flame, spark, arc-producing equipment, switch, pilot light, cigarette, or other ignition source near the fuel system. Keep an ABC type fire extinguisher nearby.

Use clean, fresh HD-5 grade propane or equivalent product consisting of at least 90% propane.

NOTICE

Commercial propane may contain more than 2.5% butane, which can result in poor fuel vaporization and low tank pressure, resulting in poor engine starting and operation in below 32 °F (0 °C) temperatures.

Propane Tank Size

When propane is used, size the tank correctly to ensure successful generator set operation.
Considerations when figuring the proper propane tank size:

- Temperature is a critical factor that affects the size of the tank.
 - Ambient temperatures can affect how quickly liquid is converted to gas.
 - Generator set fuel consumption is the same regardless of the surrounding temperatures.
 - Colder weather climates require larger fuel tanks. Larger tanks have greater surface area, allowing more liquid propane to vaporize and maintain the required fuel rate.
 - Propane is stored as liquid. Keep the fuel tank at least 50% full to operate properly. Fuel tanks that are less than 50% full may not have the capacity to vaporize enough propane to operate the generator set and other LP applications.

- Propane tanks are sized by their internal volume in gallons, not the amount of fuel they can hold (which is less).
- Propane tanks are generally filled to only 80% of their capacity. Therefore, a 500-gallon tank results in 400-gallon tank capacity.
- Low ambient temperatures affect the amount of fuel available from the propane tank.
- Approximately 60% of the fuel (in gallons) filled in the tank can be effectively used. Therefore, a 500-gallon tank results in 240-gallon usable capacity.

To assist in the proper installation of the propane tank, follow the guidelines below.

- Fit the propane tanks with a pressure reducing regulator before connection to the generator set to prevent fuel system damage.
- Locate the propane tanks at least 10 feet (3 meters) from any source of combustion (including the generator set).
- Install the propane tanks according to all national and local codes and standards.

Refer to the Fuel Line Selection Appendix for propane figures and tables.

Sizing Fuel Lines

Incorrect fuel line size may cause the generator set to not run or provide a full load. Fuel line sizes for installations typically range from 1/4-in. to 2 or more inches in diameter.

To determine the optimal fuel line size, the following information is needed:

- Fuel flow requirements for the generator set - Larger kW generator sets generally have higher fuel consumption and fuel line size requirements.
• The fuel source (natural gas or propane vapor) - Fuel sources can affect fuel line size. Natural gas installations generally require a higher fuel flow rate compared to propane vapor installations, since propane has a higher energy content.

• Fuel line length (including fittings) - Factor in the equivalent lengths of all of the fittings (elbows, tees, valves) in the installation in addition to the fuel line length. Longer lengths require larger diameters.

• Fuel line type (e.g., copper tubing or iron pipe) - Most fuel line types are iron pipe or copper tubing. Be sure to use the sizing chart for the line type when sizing the fuel line.

There are some basic but very important steps all installers must follow to make sure that fuel lines are sized correctly.

1. Verify adequate fuel flow, quality, and pressure available from utility connection.
2. Determine fuel requirements at full load. (See the Fuel Specifications table in the Model Specifications section to determine the fuel flow requirements.)
3. Determine equivalent length of fuel line fittings required (See the Fuel Line Size Based on Fitting table in the Fuel Line Selection Appendix to determine the equivalent lengths for elbows, tees, and valves. Add this length to fuel line length to determine total equivalent length.)
4. Determine required fuel line size at full load. (See the Fuel Line Sizing table in the Fuel Line Selection Appendix to determine the fuel line size.)

To calculate the minimum pipe size:

1. Make a list of all the fittings and valves in a proposed system and add their equivalent lengths.
2. Add all lengths of straight pipe to arrive at a total equivalent length to the fittings/valves total.
3. Choose the applicable table based on the fuel system and fuel line material.
4. Obtain the maximum fuel requirements for the specific generator set from the manufacturer's specification sheets. Convert to ft³/hr as needed.
5. Refer to the fuel line sizing charts in the Fuel Line Selection Appendix. Locate the equivalent length of pipe (or next larger equivalent length) in the left hand column. Move across the row to where the maximum capacity number is as large as or larger than the maximum fuel consumption (or next larger). At the top of that column is the minimum nominal pipe size or tubing size required for the system as designed.
Installing Fuel Lines

The basic components required for fuel line installation are as follows.

- Flexible connection
- Fuel line
- Shutoff valve
- Fuel supply

To install the fuel lines:

1. Connect a flexible fuel line to the fuel connection ports on the generator set.
2. Connect the opposite end of the flexible fuel line to the fuel source line.

NOTICE

A shutoff valve is recommended and often required by local and state codes.

Testing the Fuel System for Leaks

After assembly and before initial operation, all of the fuel system components must be tested and proven free of any leaks.

CAUTION

Fuel presents the hazard of explosion or fire which can result in severe personal injury or death. Do not use an open flame to check for leaks. Do not smoke or allow any flame, spark, pilot light, arc-producing equipment, switch or other ignition sources around fuel or fuel components.

NOTICE

Follow any local codes and standards, as they may require a different method or documentation of a leak test.

After assembly, and before initial operation, all fuel system connections, hose, valves, regulators and fittings must be tested and proven free of leaks using a soap-and-water (or equivalent) solution while the system is under gas or air pressure of at least 1.5 times the supply pressure or 3 psi (20.7 kPa) minimum.

1. Pressurize the system to a minimum of one and a half times the required fuel supply pressure.
2. Use a mixture of dish soap and water. Spray on all the joints.
3. Inspect all of the joints and monitor the line pressure. If bubbles appear, there is a leak.
4. If a leak is found, tighten the joints, recheck for leaks, and repair or replace component(s) as needed.

4.3 Engine Exhaust

The exhaust system for this generator set is complete and was designed specifically for this engine. Do not modify or add to the exhaust system of this generator set.

WARNING

Exhaust gas is deadly. Make sure that the exhaust system terminates away from building vents, windows, doors, and sheltered spaces that may not have ample fresh air ventilation.

WARNING

Engine discharge air and exhaust carry carbon monoxide gas (odorless and invisible) which can cause asphyxiation and death. Never use engine discharge air or exhaust for heating a room or enclosed space.

4.4 Electrical Connections

NOTICE

Refer to regional codes and the National Electrical Code (NFPA 70) for all electrical installation requirements.

WARNING

Improper installation can lead to electrocution and damage to property. Electrical connections must be made by a licensed electrician.

WARNING

Automatic startup of the generator set during installation can cause severe personal injury or death. Assure the generator set operation switch is in the OFF position. Disconnect the negative cable from the battery and secure it to prevent contact of the cable to the battery terminal and from starting the generator set.

Separate conduits are required for:

- Main wiring for generator AC voltage: conductors between the generator set breaker and transfer switch.
- 120 VAC 60 Hz utility house power: power to operate the optional battery charger, coolant heater, or alternator heater.
- Communications: low voltage signals between generator set and transfer switch, data signals between the control and optional remote display, auxiliary input/output signals to/from the control.
AC Connections

WARNING

Automatic startup of the generator set during installation can cause severe personal injury or death. Push the control switch OFF and disconnect the negative (-) cable from the battery and prevent the cable (any electrical connection) from contacting the battery B-terminal to keep the generator set from starting.

NOTICE

Use copper conductors only. 250 amp, 100% rated circuit breaker assembly requires 194 °F (90 °C) conductors.

For grounding and neutral connections, look for the following symbols on the generator set circuit breaker cabinets.

FIGURE 8. EQUIPMENT GROUNDING CONDUCTOR SYMBOL

FIGURE 9. EQUIPMENT NEUTRAL CONNECTION SYMBOL
FIGURE 10. CIRCUIT BREAKER AC LOAD CONNECTIONS LOCATION

For connection to the generator set, AC load connections are made in the circuit breaker box. To access:

1. Remove the enclosure side panel to gain access to main circuit breaker box.
2. Place the circuit breaker handle in the OFF position.
3. Remove the four bolts holding the circuit breaker cover.
4. Install the conductors to the circuit breaker load-side terminals, neutral lug, and equipment grounding lug.
5. Torque the circuit breaker terminals per specifications on the circuit breaker label.
6. Torque the neutral lug to 275 inch-pounds (31.1 Nm).
7. Torque the equipment grounding lug to 120 inch-pounds (13.8 Nm).
8. Fill in the stub-up openings with an approved duct seal or mastic tape to keep out insects and rodents.

9. Install the circuit breaker cover.

Automatic Transfer Switch AC Connections

![Warning]

Failure to use an approved transfer switch can lead to the electrocution of personnel working on the utility lines, damage to equipment, fire, or personal injury. An approved switching device must be used to prevent interconnection to the public utility.

Install the transfer switch in accordance with the Transfer Switch Installation Manual.

![Diagram]

FIGURE 11. RA SERIES TRANSFER SWITCH CONNECTIONS LOCATION
Factory Option and Accessory Connections

NOTICE

Use copper conductors only.

AC powered options or accessories available:
- Battery charger
- Engine coolant heater
- Alternator heater
- Battery warmer

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC Distribution Connector(s)</td>
</tr>
</tbody>
</table>

FIGURE 12. AC ACCESSORY CONNECTIONS

The battery charger, engine coolant heater, alternator heater, and battery warmer require power from a 120 VAC, 20 amp protected circuit from the Main Distribution Panel. Use 12 AWG 167°F (75 °C) conductors to make connection to the generator set AC distribution connector.
DC Connections

NOTICE

When selecting and installing conduit to the generator set, account for any needed accessories, such as a remote display, etc.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC Circuit Connector(s)</td>
</tr>
</tbody>
</table>

FIGURE 13. DC CUSTOMER CONNECTIONS
Automatic Transfer Switch DC Connections

WARNING

An approved switching device must be used to prevent interconnection to the public utility. Failure to do so can lead to the electrocution of personnel working on the utility lines, damage to equipment, fire, or personal injury.

Install the transfer switch in accordance with its Installation Manual. The following images shows the location of the Cummins RA Series Transfer Switch customer connections.

NOTICE

Class 1 wiring methods should be used for connecting the generator set and transfer switch signal wiring.

FIGURE 14. RA SERIES TRANSFER SWITCH CONNECTIONS LOCATION
FIGURE 15. GENERATOR SET TO RA TRANSFER SWITCH DC CUSTOMER CONNECTIONS

Drilling Locations for Electrical Connections

Preferred routing of electrical leads is vertically through conduit that is installed in the mounting pad that terminates in the electrical connection areas. Refer to the generator set Foundation Outline drawing in the Outline and System Drawings Appendix for location of electrical connection areas. In some cases, it may be necessary to route electrical leads horizontally in conduits that pass through the

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC Circuit Connectors</td>
<td>5</td>
<td>Remote Start</td>
</tr>
<tr>
<td>2</td>
<td>DC Customer Connections (within dotted line box)</td>
<td>6</td>
<td>Fuse B+ (5A)</td>
</tr>
<tr>
<td>3</td>
<td>1302 Control</td>
<td>7</td>
<td>Ready to Load</td>
</tr>
<tr>
<td>4</td>
<td>Ground (B-)</td>
<td>8</td>
<td>RA Transfer Switch Terminal Block</td>
</tr>
</tbody>
</table>
generator set chassis. Refer to the figure below for available drilling space for conduit holes in the side of the chassis. Holes up to 3 inches in diameter can be made in the chassis in the areas shown. Exceeding 3 inches in diameter may cause failure of the chassis. Comply to NEC and local codes and standards for installation of wires for electrical circuits. Refer to NEC standards for required wire bend radius and ampacity of load leads.

![Diagram of generator set chassis with labeled drilling locations](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Circuit Breaker Side (shaded areas)</td>
<td>3</td>
<td>Drilling Allowed (shaded sections)</td>
</tr>
<tr>
<td>2</td>
<td>DC (left) and AC (right) Connection Area (shaded areas)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 16. DRILLING LOCATIONS FOR SIDE ELECTRICAL CONNECTIONS
FIGURE 17. CABELING ROOM FOR CIRCUIT BREAKER

Grounding

NOTICE

The generator set is shipped from the factory with the neutral and equipment ground not bonded together.

Refer to local codes and standards for grounding procedures.

Battery

The generator set requires a 12V battery (negatively grounded) for engine cranking and powering the electronic control system. When the generator set is running, the battery is charged from the engine-driven battery alternator. When the set is not running, an AC powered battery charger is needed to keep the battery charged.

As part of the installation, make sure that the battery is secured to the battery tray with the strap provided.
To connect the battery:

1. Connect the positive battery terminal.
2. Connect the negative battery terminal.
3. Make sure that the black and red battery cable boots are in place.

Refer to the Model Specifications section for battery specifications.

An optional thermostatically controlled battery heater is available for more reliable starting in ambient temperatures down to -40 °F (-40 °C).

To prevent injury due to accidental startup, do not connect the battery cables to the battery until the installation has been completed; tools, rags, and body parts are away from any rotating parts or electrically live parts; and it is time to start the set.

NOTICE

Ensure that the AC power to the battery charger is disconnected when installing the battery.

NOTICE

Wear proper safety protection when working around batteries. Keep open flames and sparks away from the equipment.
<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only personnel knowledgeable of batteries and required precautions should perform or supervise battery servicing.</td>
</tr>
</tbody>
</table>
5 Startup and Configuration

5.1 Brightness and Contrast

The Screen Adjust Menu allows the contrast, brightness, and units to be set. To access the Screen Adjust Menu:

1. From any Information screen, hold down the up and down arrows simultaneously for two seconds to gain access to the Service Menu screen.
2. Select Screen Adjust.

To adjust the contrast, brightness, or units from the Screen Adjust screen:

1. From the Screen Adjust Menu, select Adjust to access the screen variables.
2. Press the right arrow to move between the variables.
3. Adjust settings, and press Save to save any changes.

When updating these settings, the function of the keys are as follows:

- The horizontal right arrow key is used to select successive blocks for editing settings on the screen.
- Select the left arrow to return to the previous screen.
- Adjust values by using the + or - keys on the Adjust Menu of the Display Setup Menu.
- Press Save to save any changes. After savings, the Save button changes to the Adjust button.

NOTICE

The following screens represent the standard operator panel (HMI211). If using an in-home operator panel, which may be additionally purchased as an option, the screens may look slightly different. This procedure applies to both operator panels.
FIGURE 19. BRIGHTNESS AND CONTRAST MENU NAVIGATION

NOTICE

Adjusting the brightness on the Operator Panel adjusts the brightness of both the LCD backlight and the LEDs on the display. The contrast should never be 0 or 100% on any of the screens. The default value for Brightness is 50%.
5.2 History and About Menu

To access the History/About Menu:

1. From any Information Menu, hold down the up and down arrows simultaneously for two seconds. The Service Menu appears.
2. Select History/About.
3. Advance through the screens to view information about the generator set, control, and display.

NOTICE
The following screens represent the standard operator panel (HMI211). If using an in-home operator panel, which may be additionally purchased as an option, the screens may look slightly different. This procedure applies to both operator panels.
FIGURE 20. HISTORY/ABOUT MENU
5.3 Time Setup

NOTICE
When battery power is lost, these settings must be reset.

To set up the generator set clock for the current date and time:

1. Access the Time Setup Menu by selecting **Clock Exerciser** on the Genset Service Menu.
2. Select **Adjust**.

When updating these settings, the function of the keys are as follows:

- The horizontal right arrow key is used to select successive blocks for editing settings on the screen.
- Select the left arrow to return to the previous screen.
- Adjust values by using the + or - keys on the Adjust Menu of the Time Setup Menu.
- Press **Save** to save any changes. After savings, the Save button changes to the Adjust button.

![TIME SETUP SCREEN](image)

FIGURE 21. TIME SETUP SCREEN

Updating Daylight Saving Adjust Menu

To update the Savings Time and Adjustment on the Daylight Saving Adjust Menu:

1. Press the down key on the Time Setup Menu to access the Daylight Saving Adjust Menu.
2. Select **Adjust**.
When updating these settings, the functions of the keys are as follows:

- The horizontal right arrow key is used to select successive blocks for editing settings on the screen.
- Select the left arrow to return to the previous screen.
- Adjust values by using the + or - keys on the Adjust Menu of the Daylight Saving Adjust Menu.
- Press **Save** to save any changes. After savings, the Save button changes to the Adjust button.

FIGURE 22. DAYLIGHT SAVING ADJUST MENU NAVIGATION

To access and update the Daylight Saving Adjust Start Menu:

1. Press the down key on the Daylight Saving Adjust Menu.
2. Press **Adjust**.

When updating these settings, the functions of the keys are as follows:

- The horizontal right arrow key is used to select successive blocks for editing settings on the screen.
- Use the + or - keys to edit the following settings:
 - Month
 - Week
 - Day
 - Hour
- Press **Save** to save any changes. After savings, the Save button changes to the Adjust button.
To access and update the Daylight Saving Adjust End Menu:

1. Press the down key on the Daylight Saving Adjust Start Menu.

2. Press **Adjust**.

When updating these settings, the functions of the keys are as follows:

- The horizontal right arrow key is used to select successive blocks for editing settings on the screen.
- Use the + or - keys to edit the following settings:
 - Month
 - Week
 - Day
 - Hour
- Press **Save** to save any changes. After savings, the Save button changes to the Adjust button.
5.4 Exercise Settings

NOTICE

When the battery power is lost, these settings must be reset.

To access the Clock/Exerciser Menu:

1. From any Information Menu, hold down the up and down arrows simultaneously for two seconds. The Service Menu appears.

2. Navigate through the screens to find and select **Clock/Excr** in the Service Menu.

NOTICE

The following screens represent the standard operator panel (HMI211). If using an in-home operator panel, which may be additionally purchased as an option, the screens may look slightly different. This procedure applies to both operator panels.
FIGURE 25. CLOCK/EXERCISER MENU NAVIGATION

Battery: 12.4 VDC
Eng. Temp: 180 °F
Oil Press: 75 PSI
Eng Hours: 2222 h

SERVICE MENU
1) Setup Menus
2) History/About
3) Screen Adjust
4) More Options

SERVICE MENU
4) Fault History
5) Status
6) Lamp Test
7) More Options

SERVICE MENU
7) Network Status
8) Clock/Excr
8) More Options

TIME SETUP
Date: 00:00:00
mm:dd:yy
Time: 00:00 AM

ADJUST
Updating Exercise Frequency

To update the exercise frequency and dates on the Clock/Exerciser Menu:

1. Press **Exercise Schdr** on the Daylight Saving Adjust End Menu.

2. Press **Adjust**.

When updating these settings, the functions of the keys are as follows:

- The horizontal right arrow key is used to select successive blocks for editing settings on the screen.
- Use the + or - keys to edit the following settings:
 - Schdr Enable: Enable or Disable
 - Exercise Schedule: Semi-Annual (every six months), Quarterly, Monthly, Bi-Weekly (every two weeks), or Weekly
 - Exercise Schedule: Day, Hours, Minutes, AM/PM
- Press **Save** to save any changes. After savings, the Save button changes to the Adjust button.

![FIGURE 26. EXERCISE FREQUENCY NAVIGATION](image)

Updating Exercise Duration

To update the exercise duration on the Clock/Exerciser Menu:

1. Press the down key on the Exercise Schdr Menu.

2. Press **Adjust**.

When updating these settings, the functions of the keys are as follows:

- The horizontal right arrow key is used to select the duration block for editing exercise duration.
• Use the + or - keys to edit the exercise duration minutes.
• Press Save to save any changes. After savings, the Save button changes to the Adjust button.

![Exercise Schdr](image)

<table>
<thead>
<tr>
<th>Exercise Schdr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise : 5 MIN</td>
</tr>
<tr>
<td>Duration : 0 MIN</td>
</tr>
<tr>
<td>ADJUST</td>
</tr>
</tbody>
</table>

![Exercise Schdr](image)

<table>
<thead>
<tr>
<th>Exercise Schdr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise : 0 MIN</td>
</tr>
<tr>
<td>Duration : 0 MIN</td>
</tr>
<tr>
<td>SAVE</td>
</tr>
</tbody>
</table>

FIGURE 27. EXERCISE DURATION NAVIGATION

5.5 Commissioning Checklist

The commissioning checklist should be completed for each installation. There are four sections. It is important to complete the information to validate the completion of the generator set startup procedure under Cummins Power Generation recommendations. For a copy of the commissioning checklist, download it from ChannelOne Portal or contact your local dealer.

5.6 Startup

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic startup of the generator set during installation can cause severe personal injury or death. Push the control switch OFF and disconnect the negative (–) cable from the battery to keep the generator set from starting.</td>
</tr>
</tbody>
</table>

After verifying that the installation was completed correctly, start and test the system. Make sure to connect the battery cables to the battery with the positive (+) cable first.
Read through the Operator Manual and perform the maintenance and pre-start checks as instructed. The generator set is shipped from the factory with the proper level of engine oil and coolant, but should be checked before it is started. Start and operate the generator set following all the instructions and precautions in the Operator Manual. Ensure that the bonding bolts are reinstalled into the service panels before leaving the site.

NOTICE

Before leaving the site, if the generator set is ready to be placed in service, set the control switch to the AUTO position to provide automatic standby power.

NOTICE

Contact your local Cummins service representative if you encounter a fault code.
Appendix A. Fuel Line Selection

Table of Contents

Figure 28. Minimum LPG Tank Size (50% Full) Required to Maintain 5 PSIG at Specific Withdrawal Rate and Minimum Expected Winter Temperature ... 63
Table 16. Natural Gas Schedule 40 Iron Pipe Sizing ... 63
Table 18. Natural Gas Semi-Rigid Copper Tubing Sizing ... 64
Table 20. Propane Vapor Schedule 40 Iron Pipe Sizing .. 65
Table 22. Propane Vapor Semi-Rigid Copper Tubing Sizing .. 66
Table 24. Equivalent Lengths of Pipe Fittings in Feet (Meters) .. 68
A.0 Gas Pipe Sizing

Sizing of gas piping for proper fuel delivery, both flow and pressure, can become quite complex. However, a simplified method, is to convert all fittings, valves, etc. to equivalent lengths of pipe in the diameter(s) being considered. The total equivalent length can then be related to flow capacity.

Tables are included for natural gas, propane liquid withdrawal and propane vapor withdrawal under specified conditions. Consult NFPA 54 or other applicable codes for other operating conditions or other fuel system installation requirements. The tables displayed in this section are reprinted with permission from NFPA 54-2002, National Fuel Gas Code, Copyright © 2002, National Fire Protection Association, Quincy, MA 02169. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.

A calculation of minimum pipe size is fairly straightforward:

- Make a list of all the fittings and valves in a proposed system and sum their equivalent lengths using the table.
- Add to this total, all lengths of straight pipe to arrive at a total equivalent length.
- Choose the applicable table based on the fuel system.
- Obtain the maximum fuel requirements for the specific generator set(s) from the manufacturer’s specification sheets. Convert to ft³/hr as needed.
- Locate the equivalent length of pipe (or next larger equivalent length) in the left hand column. Move across the row to where the maximum capacity number is as large as or larger than the maximum fuel consumption (or next larger). At the top of that column is the minimum nominal pipe size or tubing size required for the system as designed.
FIGURE 28. MINIMUM LPG TANK SIZE (50% FULL) REQUIRED TO MAINTAIN 5 PSIG AT SPECIFIC WITHDRAWAL RATE AND MINIMUM EXPECTED WINTER TEMPERATURE

TABLE 16. NATURAL GAS SCHEDULE 40 IRON PIPE SIZING

<table>
<thead>
<tr>
<th>Pipe Size (in.)</th>
<th>1/4</th>
<th>3/8</th>
<th>1/2</th>
<th>3/4</th>
<th>1</th>
<th>1 1/4</th>
<th>1 1/2</th>
<th>2</th>
<th>2 1/2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>0.364</td>
<td>0.493</td>
<td>0.622</td>
<td>0.824</td>
<td>1.049</td>
<td>1.380</td>
<td>1.610</td>
<td>2.067</td>
<td>2.469</td>
<td>3.068</td>
<td>4.026</td>
</tr>
<tr>
<td>Actual ID</td>
<td>0.364</td>
<td>0.493</td>
<td>0.622</td>
<td>0.824</td>
<td>1.049</td>
<td>1.380</td>
<td>1.610</td>
<td>2.067</td>
<td>2.469</td>
<td>3.068</td>
<td>4.026</td>
</tr>
</tbody>
</table>

Maximum Capacity in Cubic Feet of Gas per Hour
Gas: Natural
Inlet Pressure: 0.5 psi or less
Pressure Drop: 0.5 in. w.c.
Specific Gravity: 0.6

<table>
<thead>
<tr>
<th>Tube Size (in.)</th>
<th>K & L</th>
<th>ACR</th>
<th>Outside</th>
<th>Inside</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/4</td>
<td>3/8</td>
<td>1/2</td>
<td>5/8</td>
</tr>
<tr>
<td>Nominal</td>
<td>3/8</td>
<td>1/2</td>
<td>5/8</td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
<td>0.750</td>
</tr>
<tr>
<td></td>
<td>0.305</td>
<td>0.402</td>
<td>0.527</td>
<td>0.652</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (ft)</th>
<th>Maximum Capacity in Cubic Feet of Gas per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 18. NATURAL GAS SEMI-RIGID COPPER TUBING SIZING
Gas: Natural

Inlet Pressure: 0.5 psi or less
Pressure Drop: 0.5 in. w.c.
Specific Gravity: 0.6

<table>
<thead>
<tr>
<th>Pipe Size (in.)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>175</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual:</td>
<td>0.622</td>
<td>0.824</td>
<td>1.049</td>
<td>1.38</td>
<td>1.61</td>
<td>2.067</td>
<td>3.068</td>
<td>5.44</td>
<td>1133</td>
<td>2004</td>
<td>324</td>
<td>510</td>
<td>1063</td>
<td>1880</td>
<td>3407</td>
<td>6173</td>
</tr>
<tr>
<td>Length (ft)</td>
<td>65</td>
<td>108</td>
<td>156</td>
<td>204</td>
<td>242</td>
<td>310</td>
<td>528</td>
<td>546</td>
<td>701</td>
<td>1218</td>
<td>331</td>
<td>544</td>
<td>1063</td>
<td>2004</td>
<td>324</td>
<td>6173</td>
</tr>
</tbody>
</table>

Table capacities are based on Type K copper tubing inside diameter (shown), which has the smallest inside diameter of the copper tubing products.

TABLE 20. PROPANE VAPOR SCHEDULE 40 IRON PIPE SIZING

Gas: Undiluted Propane
Inlet Pressure: 11.0 in. w.c.
Pressure Drop: 0.5 in. w.c.
Specific Gravity: 1.50
Special Use: Pipe sizing between single or second stage (low pressure regulator) and appliance.

<table>
<thead>
<tr>
<th>Pipe Size (in.)</th>
<th>1/2</th>
<th>3/4</th>
<th>1</th>
<th>1 1/4</th>
<th>1 1/2</th>
<th>2</th>
<th>3</th>
<th>3 1/2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual:</td>
<td>0.622</td>
<td>0.824</td>
<td>1.049</td>
<td>1.38</td>
<td>1.61</td>
<td>2.067</td>
<td>3.068</td>
<td>3.548</td>
<td>4.026</td>
</tr>
<tr>
<td>Length (ft)</td>
<td>65</td>
<td>108</td>
<td>156</td>
<td>204</td>
<td>242</td>
<td>310</td>
<td>528</td>
<td>546</td>
<td>701</td>
</tr>
</tbody>
</table>

Maximum Capacity in Thousands of Btu per Hour
Appendix A. Fuel Line Selection 10-2013

Gas: Undiluted Propane
Inlet Pressure: 11.0 in. w.c.
Pressure Drop: 0.5 in. w.c.
Specific Gravity: 1.50
Special Use: Pipe sizing between single or second stage (low pressure regulator) and appliance.

<table>
<thead>
<tr>
<th>Tube Size (in.)</th>
<th>K & L ACR</th>
<th>1/4</th>
<th>3/8</th>
<th>1/2</th>
<th>5/8</th>
<th>3/4</th>
<th>1</th>
<th>1 1/4</th>
<th>1 1/2</th>
<th>2</th>
<th>2 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1/4</td>
<td>291</td>
<td>608</td>
<td>1145</td>
<td>2352</td>
<td>3523</td>
<td>6786</td>
<td>19119</td>
<td>27993</td>
<td>38997</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3/8</td>
<td>200</td>
<td>418</td>
<td>787</td>
<td>1616</td>
<td>2422</td>
<td>4664</td>
<td>13141</td>
<td>19240</td>
<td>26802</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1/2</td>
<td>160</td>
<td>336</td>
<td>632</td>
<td>1298</td>
<td>1945</td>
<td>3745</td>
<td>10552</td>
<td>15450</td>
<td>21523</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5/8</td>
<td>137</td>
<td>287</td>
<td>541</td>
<td>1111</td>
<td>1664</td>
<td>3205</td>
<td>9031</td>
<td>13223</td>
<td>18421</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3/4</td>
<td>122</td>
<td>255</td>
<td>480</td>
<td>984</td>
<td>1475</td>
<td>2841</td>
<td>8004</td>
<td>11720</td>
<td>16326</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1/1</td>
<td>110</td>
<td>231</td>
<td>434</td>
<td>892</td>
<td>1337</td>
<td>2574</td>
<td>7253</td>
<td>10619</td>
<td>14793</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1 1/8</td>
<td>94</td>
<td>197</td>
<td>372</td>
<td>763</td>
<td>1144</td>
<td>2203</td>
<td>6207</td>
<td>9088</td>
<td>12661</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1 3/8</td>
<td>84</td>
<td>175</td>
<td>330</td>
<td>677</td>
<td>1014</td>
<td>1952</td>
<td>5501</td>
<td>8055</td>
<td>11221</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>1 5/8</td>
<td>74</td>
<td>155</td>
<td>292</td>
<td>600</td>
<td>899</td>
<td>1730</td>
<td>4876</td>
<td>7139</td>
<td>9945</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>2 1/8</td>
<td>67</td>
<td>140</td>
<td>265</td>
<td>543</td>
<td>814</td>
<td>1568</td>
<td>4418</td>
<td>6468</td>
<td>9011</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>2 5/8</td>
<td>58</td>
<td>120</td>
<td>227</td>
<td>465</td>
<td>697</td>
<td>1342</td>
<td>3781</td>
<td>5536</td>
<td>7712</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>51</td>
<td>107</td>
<td>201</td>
<td>412</td>
<td>618</td>
<td>1189</td>
<td>3351</td>
<td>4906</td>
<td>6835</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>46</td>
<td>97</td>
<td>182</td>
<td>373</td>
<td>560</td>
<td>1078</td>
<td>3036</td>
<td>4446</td>
<td>6193</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td>42</td>
<td>89</td>
<td>167</td>
<td>344</td>
<td>515</td>
<td>991</td>
<td>2793</td>
<td>4090</td>
<td>5698</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>40</td>
<td>83</td>
<td>156</td>
<td>320</td>
<td>479</td>
<td>922</td>
<td>2599</td>
<td>3805</td>
<td>5301</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 22. PROPAINE VAPOR SEMI-RIGID COPPER TUBING SIZING

Gas: Undilute Propane
Inlet Pressure: 11.0 in w.c.
Pressure Drop: 0.5 in. w.c.
Specific Gravity: 1.50
Special Use: Sizing between single or second stage (low pressure regulator) and appliance.
Gas: Undilute Propane
Inlet Pressure: 11.0 in w.c.
Pressure Drop: 0.5 in. w.c.
Specific Gravity: 1.50
Special Use: Sizing between single or second stage (low pressure regulator) and appliance

<table>
<thead>
<tr>
<th>Length (ft)</th>
<th>Maximum Capacity in Thousands of Btu per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>45 93 188 329 467 997 1795 2830 5895 10429</td>
</tr>
<tr>
<td>20</td>
<td>31 64 129 226 321 685 1234 1945 4051 7168</td>
</tr>
<tr>
<td>30</td>
<td>25 51 104 182 258 550 991 1562 3253 5756</td>
</tr>
<tr>
<td>40</td>
<td>21 44 89 155 220 471 848 1337 2784 4926</td>
</tr>
<tr>
<td>50</td>
<td>19 39 79 138 195 417 752 1185 2468 4366</td>
</tr>
<tr>
<td>60</td>
<td>17 35 71 125 177 378 681 1074 2236 3956</td>
</tr>
<tr>
<td>70</td>
<td>16 32 66 115 163 348 626 988 2057 3639</td>
</tr>
<tr>
<td>80</td>
<td>15 30 61 107 152 324 583 919 1914 3386</td>
</tr>
<tr>
<td>90</td>
<td>14 28 57 100 142 304 547 862 1796 3177</td>
</tr>
<tr>
<td>100</td>
<td>13 27 54 95 134 287 517 814 1696 3001</td>
</tr>
<tr>
<td>125</td>
<td>11 24 48 84 119 254 458 722 1503 2660</td>
</tr>
<tr>
<td>150</td>
<td>10 21 44 76 108 230 415 654 1362 2410</td>
</tr>
<tr>
<td>175</td>
<td>10 20 40 70 99 212 382 602 1253 2217</td>
</tr>
<tr>
<td>200</td>
<td>8.9 18 37 65 92 197 355 560 1166 2062</td>
</tr>
<tr>
<td>225</td>
<td>8.3 17 35 61 87 185 333 525 1094 1935</td>
</tr>
<tr>
<td>250</td>
<td>7.9 16 33 58 82 175 315 496 1033 1828</td>
</tr>
<tr>
<td>275</td>
<td>7.5 15 31 55 78 166 299 471 981 1736</td>
</tr>
<tr>
<td>300</td>
<td>7.1 15 30 52 74 158 285 449 936 1656</td>
</tr>
</tbody>
</table>

Table capacities are based on Type K copper tubing inside diameter (shown), which has the smallest inside diameter of the copper tubing products.
TABLE 24. EQUIVALENT LENGTHS OF PIPE FITTINGS IN FEET (METERS)

<table>
<thead>
<tr>
<th>TYPE OF FITTING</th>
<th>NOMINAL INCH (MILLIMETER) PIPE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 (50)</td>
</tr>
<tr>
<td>90° Stand. Elbow</td>
<td>5.2 (1.6)</td>
</tr>
<tr>
<td>90° Med. Radius Elbow</td>
<td>4.6 (1.4)</td>
</tr>
<tr>
<td>90° Long Radius Elbow</td>
<td>3.5 (1.1)</td>
</tr>
<tr>
<td>45° Elbow</td>
<td>2.4 (0.7)</td>
</tr>
<tr>
<td>TEE, Side Inlet or Outlet</td>
<td>10 (3.0)</td>
</tr>
<tr>
<td>18 Inch Flex Tube</td>
<td>3 (0.9)</td>
</tr>
<tr>
<td>24 Inch Flex Tube</td>
<td>4 (1.2)</td>
</tr>
</tbody>
</table>
Appendix B. Outline and System Drawings

Table of Contents

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 29.</td>
<td>Generator Set Outline, 20-25 kW 1800 RPM, 30 kW 3600 RPM (Sheet 1 of 2)</td>
<td>71</td>
</tr>
<tr>
<td>Figure 30.</td>
<td>Generator Set Outline, 20-25 kW 1800 RPM, 30 kW 3600 RPM (Sheet 2 of 2)</td>
<td>72</td>
</tr>
<tr>
<td>Figure 31.</td>
<td>Generator Set Outline, 30-40 kW 1800 RPM, 36-60 kW 3600 RPM (Sheet 1 of 2)</td>
<td>73</td>
</tr>
<tr>
<td>Figure 32.</td>
<td>Generator Set Outline, 30-40 kW 1800 RPM, 36-60 kW 3600 RPM (Sheet 2 of 2)</td>
<td>74</td>
</tr>
<tr>
<td>Figure 33.</td>
<td>Foundation Outline, 20-25 kW 1800 RPM, 30 kW 3600 RPM (Sheet 1 of 1)</td>
<td>75</td>
</tr>
<tr>
<td>Figure 34.</td>
<td>Foundation Outline, 30-40 kW 1800 RPM, 36-60 kW 3600 RPM (Sheet 1 of 1)</td>
<td>76</td>
</tr>
<tr>
<td>Figure 35.</td>
<td>Enclosure Outline, 20-25 kW 1800 RPM, 30 kW 3600 RPM (Sheet 1 of 2)</td>
<td>77</td>
</tr>
<tr>
<td>Figure 36.</td>
<td>Enclosure Outline, 20-25 kW 1800 RPM, 30 kW 3600 RPM (Sheet 2 of 2)</td>
<td>78</td>
</tr>
<tr>
<td>Figure 37.</td>
<td>Enclosure Outline, 30-40 kW 1800 RPM, 36-60 kW 3600 RPM (Sheet 1 of 2)</td>
<td>79</td>
</tr>
<tr>
<td>Figure 38.</td>
<td>Enclosure Outline, 30-40 kW 1800 RPM, 36-60 kW 3600 RPM (Sheet 2 of 2)</td>
<td>80</td>
</tr>
<tr>
<td>Figure 39.</td>
<td>Circuit Breaker Outline (Sheet 1 of 1)</td>
<td>81</td>
</tr>
<tr>
<td>Figure 40.</td>
<td>Wiring Diagram (Sheet 1 of 6)</td>
<td>82</td>
</tr>
<tr>
<td>Figure 41.</td>
<td>Wiring Diagram (Sheet 2 of 6)</td>
<td>83</td>
</tr>
<tr>
<td>Figure 42.</td>
<td>Wiring Diagram (Sheet 3 of 6)</td>
<td>84</td>
</tr>
<tr>
<td>Figure 43.</td>
<td>Wiring Diagram (Sheet 4 of 6)</td>
<td>85</td>
</tr>
<tr>
<td>Figure 44.</td>
<td>Wiring Diagram (Sheet 5 of 6)</td>
<td>86</td>
</tr>
<tr>
<td>Figure 45.</td>
<td>Wiring Diagram (Sheet 6 of 6)</td>
<td>87</td>
</tr>
</tbody>
</table>
This page is intentionally blank.
FIGURE 29. GENERATOR SET OUTLINE, 20-25 KW 1800 RPM, 30 KW 3600 RPM (SHEET 1 OF 2)
FIGURE 30. GENERATOR SET OUTLINE, 20-25 KW 1800 RPM, 30 KW 3600 RPM (SHEET 2 OF 2)
FIGURE 31. GENERATOR SET OUTLINE, 30-40 KW 1800 RPM, 36-60 KW 3600 RPM (SHEET 1 OF 2)
FIGURE 32. GENERATOR SET OUTLINE, 30-40 KW 1800 RPM, 36-60 KW 3600 RPM (SHEET 2 OF 2)
FIGURE 33. FOUNDATION OUTLINE, 20-25 KW 1800 RPM, 30 KW 3600 RPM (SHEET 1 OF 1)
FIGURE 34. FOUNDATION OUTLINE, 30-40 KW 1800 RPM, 36-60 KW 3600 RPM (SHEET 1 OF 1)
FIGURE 35. ENCLOSURE OUTLINE, 20-25 KW 1800 RPM, 30 KW 3600 RPM (SHEET 1 OF 2)
FIGURE 36. ENCLOSURE OUTLINE, 20-25 KW 1800 RPM, 30 KW 3600 RPM (SHEET 2 OF 2)
FIGURE 37. ENCLOSURE OUTLINE, 30-40 KW 1800 RPM, 36-60 KW 3600 RPM (SHEET 1 OF 2)
FIGURE 38. ENCLOSURE OUTLINE, 30-40 KW 1800 RPM, 36-60 KW 3600 RPM (SHEET 2 OF 2)
FIGURE 39. CIRCUIT BREAKER OUTLINE (SHEET 1 OF 1)
FIGURE 41. WIRING DIAGRAM (SHEET 2 OF 6)
FIGURE 42. WIRING DIAGRAM (SHEET 3 OF 6)
FIGURE 43. WIRING DIAGRAM (SHEET 4 OF 6)
FIGURE 44. WIRING DIAGRAM (SHEET 5 OF 6)
FIGURE 45. WIRING DIAGRAM (SHEET 6 OF 6)
This page is intentionally blank.